28V 功率 pmos 驱动&2 路栅调&3 路漏调

TR 电源管理芯片

1. 产品特性

- ▶ 28V 功率 PMOS 驱动
- ➤ PA 发射电源调制, 5V/500mA
- ▶ DRV 收发电源调制, 5V/200mA
- ➤ LNA 接收电源调制, 5V/200mA
- ➤ GaN 栅压调节, -1.7V~-3.2V
- ➤ GaAs 栅压调节, -0.3V ~ -0.65V
- ➤ GaN 栅极驱动电流±50mA
- ➤ GaAs 栅极驱动电流±10mA
- ▶ 正负压欠压锁定
- ▶ T信号过脉宽保护

2. 功能描述

C49020S是一款多功能射频电源调制器芯片,主要由28V PMOS功率管驱动电路,发射、接收、公共支路电源调制电路和GaAs、GaN栅压调节电路这三部分电路构成。其中PMOS功率管驱动电路为高速、低延迟驱动电路,具有负压电源监控及使能控制开断功能、漏极快速放电功能、过脉宽保护功能。发射、接收、公共支路电源为VDD,内置功率PMOS,由T/R信号直接控制开关。栅压调制控制电路由GaAs、GaN栅极调制共两路构成,GaAs由3位控制位对输出电压选择,GaN由4位控制位对输出电压选择,以实现栅压可调。

3. 产品应用

- ▶ 射频驱动放大器供电
- ▶ 28V功率PMOS驱动
- ➤ GaAs/GaN栅极调制驱动

4. 裸芯片/封装简介

▶ 本产品采用QFN 5*5-40封装

5. 绝对最大额定值

表 1 绝对最大额定值

符号	参数	最小值	最大值	单位
$V_{ m HI}$	PMOS功率管驱动电源		36	V
$V_{ m DD}$	正电源电压		6	V
$ m V_{EE}$	负电源电压		-6	V
$T_{ m STG}$	储存温度	-65	150	°C
T_{A}	工作温度	-55	125	°C

(1) 使用中超过这些绝对最大值可能对芯片造成永久损坏。

6. 推荐工作条件

1) 电源电压 V_{HI}: 9V~36V

2) 电源电压 V_{DD}: 4.5V~5.5V

3) 电源电压 VEE: -5.5V ~ -4.5V

4) 工作环境温度: -55℃~125℃

7. 主要电参数

除非特别说明, T_A= -55℃~125℃, V_{HI}=28V, V_{DD}=5V, V_{EE}=-5V。

表 2 主要电参数

参数	符号	测试条件	最小值	典型值	最大值	单位
VHI 静态电流	I _{VHI}	V _{HI} =28V		0.15	1	mA
VDD 静态电流	I_{VDD}	V _{DD} =5V		0.1	1	mA
VEE 静态电流	$I_{ m VEE}$	$V_{EE} = -5V$		0.55	1.5	mA
输入高电平	V_{H}		2.4			V
输入低电平	$V_{\rm L}$				0.8	V
输入漏电流	$I_{\rm IN}$	TTL=0V/5V			10	uA
TO 输出高电平	ТОн	I _{OH} =-20mA	27.9			V
TO 输出低电平	TO_L	I _{OL} =20mA	16		19	V

PD 输出低电平	PD_L	I _{PD} =20mA			0.15	V
TXO 输出高电平	ТХОн	$I_O = -500 \text{mA}$	4.85			V
TRX 输出高电平	TRXO _H	$I_O = -200 \text{mA}$	4.9			V
RXO 高电平	RXO_H	$I_O = -200 \text{mA}$	4.9			V
VG1 输出电平	VG1	I _O =±50mA, D[3:0]=0000	-1.79		-1.61	V
VG2 输出电平	VG2	I _O =±10mA, D[6:4]=000	-0.69		-0.61	V
TO 开通/关闭时间	t _{TO_ON}	负载电容≤3nF		30	100	ns
TXO 开通/关闭时间	t _{TXO_ON}	$I_{O} = -200 \text{mA} (1 \text{nF})$		50	100	ns
TRXO 开通/关闭时间	t _{TRXO_ON}	$I_{O} = -100 \text{mA} (1 \text{nF})$	X	50	100	ns
RXO 开通/关闭时间	t _{RXO_ON}	$I_{O} = -100 \text{mA} (1 \text{nF})$	X	50	100	ns

8. 功能框图及引脚介绍

8.1 功能框图

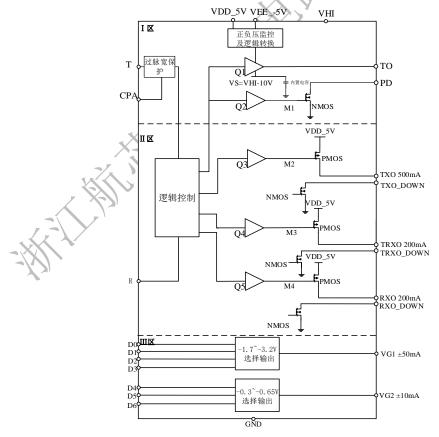


图 1 功能框图

8.2 引脚介绍

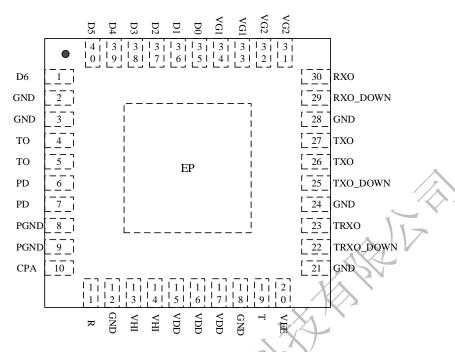


图 2 引脚分布图(俯视图)

表 3 引脚功能说明

序号	符号	功能
1	D6	GaAs 栅压调节位
2	GND	接地
3	GND	按地
4	TO	外置 PMOS 栅极驱动输出
5	ТО	ク 「. <u></u>
6	PD	外置 PMOS 漏极泄电端口
7	PD	沙上直. I MIOS /确似在电池测口
8	PGND	接功率地
9	PGND	按切平地
10	СРА	过脉宽保护时间设定脚
11	R	接收调制 TTL 输入
12	GND	接地
13	VHI	. 2027 中海
14	VHI	+28V 电源
15	VDD	
16	VDD	+5V 电源
17	VDD	

18	GND	接地
19	Т	发射调制 TTL 输入
20	VEE	-5V 电源
21	GND	接地
22	TRXO_DOWN	公共支路输出泄电端口
23	TRXO	公共支路+5V 输出
24	GND	接地
25	TXO_DOWN	发射调制输出泄电端口
26	TXO	发射调制+5V 输出
27	TXO	及别师明+3 V 制田
28	GND	接地
29	RXO_DOWN	接收调制输出泄电端口
30	RXO	接收调制+5V 输出
31	VG2	GaAs 栅压输出-0.3V ~ -0.65V
32	VG2	UaAs mil / Li mi
33	VG1	GaN 栅压输出-1.7V ~ -3.2V
34	VG1	Oatv /ш/.Eпі Щ-1.7 v ~ -3.2 v
35	D0	GaN 栅压调节位
36	D1	GaN 栅压调节位
37	D2	GaN 栅压调节位
38	D3	GaN 栅压调节位
39	D4	GaAs 栅压调节位
40	D5	GaAs 栅压调节位
	EP	热沉。位于芯片底部,与 VEE 电气连接, 请勿直接通 过此脚输入-5V 电压。

9. 逻辑功能说明

▶ 逻辑关系真值表中,"0"指0V,"1"指5V。

9.1 PMOS 驱动电路 (I区)

PMOS驱动电路为高速、低延迟驱动电路,具有负压电源监控及使能控制开断功能、漏极快速放电功能,供电单元为VHI。

9.1.1 负压电源监控逻辑

负压监测门限值为-3V,阈值范围为±0.5V,即当V_{EE}<-3.5V时,驱动器Q1使能有效,TO正常逻辑输

出; 当VEE>-2.5V时,驱动器Q1使能无效,TO为固定值28V,其逻辑关系见下表:

VEE	Q1 使能状态
<-3.5V	有效
>-2.5V	无效

表 4 负压检测使能表

▶ 引脚PD与TO后级驱动的PMOS的漏极直接连接。

9.1.2 T通道逻辑

当T为高电平时,M1管关断,TO输出低电平V_S=V_{HI}-10V,TO可开启外围PMOS;当T为低电平时,M1管打开,TO输出高电平,TO可关断外围PMOS,同时外围PMOS的漏极可通过M1管进行快速放电,满足使用过程中对放电时间的要求。同时,T信号具有过脉宽保护功能,由CPA引脚对地外接电容调制保护时间,1nF电容对应过脉宽保护阈值为1ms,T信号脉宽达到保护阈值时内部会将其关断。

输	λ	输出
VEE	T	ТО
0	0	VHI
0	XL1	VHI
-5	0	VHI
-5	1	VHI-10V

表 5 T通道逻辑和负压检测关系表

注: 当 VHI<10V, TO 为低时输出约为 1V。

9.2 电源开关控制电路(II区)

电源开关控制电路供电单元为VDD,内置PMOS,其由T/R信号直接控制。如芯片框图所示,T/R信号和TXO、RXO、TRXO、TXO_DOWN、RXO_DOWN、TRXO_DOWN的逻辑关系见下表

T	R	TXO	TXO_DOWN	TRX	TRX_DOWN	RXO	RXO_DOWN
0	0	高阻态	0	高阻态	0	高阻态	0
0	1	高阻态	0	1	高阻态	1	高阻态
1	0	1	高阻态	1	高阻态	高阻态	0
1	1	高阻态	0	高阻态	0	高阻态	0

表 6 T/R 控制逻辑关系表

9.3 栅压调制控制电路(III区)

栅压调制电路有两路,其中GaN栅压调制控制电路输出端为VG1,范围为-1.7V~-3.2V; GaAs栅压调制控制电路输出端为VG2, 范围为-0.3V~-0.65V。

9.3.1 GaN栅压调制控制逻辑关系

GaN栅压调制控制电路由4位控制位对输出电压进行选择,VG1默认态为0000(-1.7V),若需置1请连接至5V,其逻辑关系见下表7

D3	D2	D1	D0	VG1
0	0	0	0	-1.70V
0	0	0	1	-1.80V
0	0	1	0	-1.90V
0	0	1	1	-2.00V
0	1	0	0	-2.10V
0	1	0	XI	-2.20V
0	1	1	0	-2.30V
0	1	1	1	-2.40V
1	0	0	0	-2.50V
1	0	0	1	-2.60V
1	0	XLi	0	-2.70V
1	0	1	1	-2.80V
1	1/2	0	0	-2.90V
1		0	1	-3.00V
1	x = 1	1	0	-3.10V
1	1	1	1	-3.20V

表 7 GaN 栅压调制控制逻辑关系表

9.3.2 GaAs栅压调制控制逻辑关系

GaAs驱动放大器栅压调制控制电路由3位控制位对输出电压进行选择,VG2默认态为000(-0.65V),若需置1请连接至5V,其逻辑关系见下表8

D4	D5	D6	VG2
0	0	0	-0.65V
0	0	1	-0.60V
0	1	0	-0.55V
0	1	1	-0.50V

表 8 GaAs 栅压调制控制逻辑关系表

1	0	0	-0.45V
1	0	1	-0.40V
1	1	0	-0.35V
1	1	1	-0.30V

10. 芯片应用说明

10.1 典型应用图

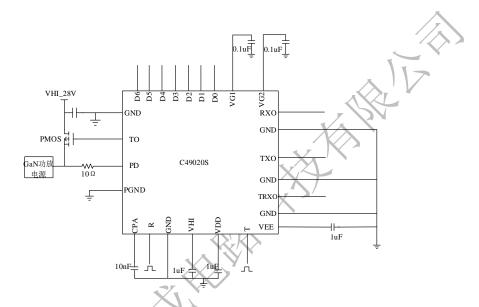


图 3 C49020S 工作推荐电路

➤ 所用PMOS漏极电压为28V, Vth<10V

10.2 应用说明

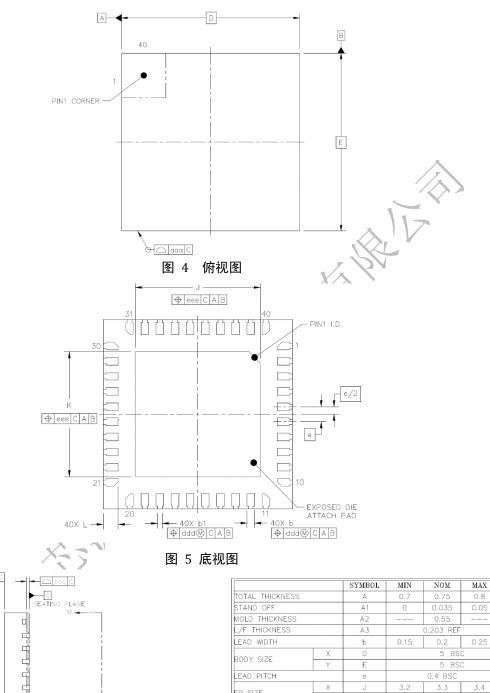
- (1) VHI、VDD、VEE 分别接+28V、+5V、-5V 的电压;
- (2) T、R 分别为发射、接收调制 TTL 输入信号, 其高电平范围 2.4V~5V, 低电平电压范围 0~0.8V;
- (3) VG1 接 GaN 功放的栅极, 供电不能超过 50mA, 可通过 D0~D3 进行-1.7V~-3.2V 范围的选择;
- (4) VG2 接 GaAs 驱放的栅极, 供电不能超过 10mA, 可通过 D4~D6 进行-0.3V~-0.65V 范围的选择;
- (5) RXO与RXO_DOWN 相连后接 200mA 以下低噪放的电源;
- (6) TXO 与 TXO_DOWN 相连后接 500mA 以下 GaAs 驱放的电源;
- (7) TRXO 与 TRXO_DOWN 相连后接 200mA 以下多功能芯片放大器的电源;
- (8) TO 接 PMOS 的栅极, 当 T 为高时, TO 输出 18V, PMOS 导通; 当 T 为低时, TO 输出 28V, PMOS 关断;
- (9) PD接PMOS的漏极,当PMOS关断时,该端口提供从PMOS漏端到地的泄放通道,使PMOS漏端快速放电。

(10) CPA 引脚外接 1nF 电容过脉宽保护时间为 1ms,外接 10nF 电容时过脉宽保护为 10ms。若不使用过脉宽保护功能时, CPA 引脚需接地。下面给出不同 CPA 电容下对应的过脉宽保护时间

- K / CIII/I/IX LI II	7 2 CM 20 11 11 11 11 11 11 11 11 11 11 11 11 11	
CPA 外接电容值	过脉宽保护时间	
100pF	90~110μs	
130 pF	140~170μs	
560pF	520~560μs	
1nF	0.9~1.16ms	
10nF	8~12ms	

表 9 CPA 外接电容值与过脉宽保护时间对照

11. 注意事项


11.1 使用注意事项

- (1) T、R、D0~D6端口内部设计有下拉电阻,不用时可悬空,状态为低;
- (2) 器件不能超过极限工作条件使用;
- (3) 电源去耦:应在靠近器件电源引出端处采用大于等于 1μμ 电容。此外,线路板布线应尽量短,尽量避免直角、锐角走线;
- (4) 电路使用时应先接电源端,再接输入端,**电源端建议按照 VEE、VDD、VHI 的顺序上电,按照 VHI、VDD、VEE 的顺序下电**,同时应尽量避免电源、地线上的干扰;
- (5) 工作时先检查电源、地是否接触良好后再接通器件电源。

11.2 防护注意事项

- (6) 本产品可以抗 1000V 静电击穿,使用时应注意避免静电损伤,操作人员戴接地防静电手环,操作台面、操作设备接地良好,拿取芯片时,最好使用真空吸笔,以免损伤芯片;
- (7) 真空包装好的芯片应贮存在温度 10℃到 30℃,相对湿度 20%~70%的环境中,周围没有酸、碱或者其它腐蚀气体,通风良好,且具备相应防静电措施,未使用的芯片应存于氮气柜中;
- (8) 在避免雨、雪直接影响的条件下,装有产品的包装箱可以用安全的运输工具运输。但不能和带有酸性、碱性和其它腐蚀性物体堆放在一起。

12. 芯片外形尺寸

SEATING PLANE			
l 🖷			
			
M			
A1 (A3)			
A -			
图 6 侧视图			

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		А	0.7	0.75	0.8
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.55	
L/F THICKNESS		А3	0.203 REF		
LEAD WIDTH		b	0.15	0.2	0.25
BODY SIZE	X	D	5 BSC		
BODT SIZE	Υ	Е	5 BSC		
LEAD PITCH		е	0.4 BSC		
EP SIZE	X	J	3.2	3.3	3.4
EP SIZE	Υ	K	3.2	3.3	3.4
LEAD LENGTH		L	0.35	0.4	0.45
PACKAGE EDGE TOLERANCE		aaa	0.1		
MOLD FLATNESS		bbb	0.1		
COPLANARITY		ccc	0.08		
LEAD OFFSET		ddd	0.1		
EXPOSED PAD OFFSE	POSED PAD OFFSET		0.1		
LEAD WIDTH		b1	0.075	0.125	0.175

13. 版本说明

产品型号	编制时间	版本编号	修订记录
C49020S	2022.07.08	Rev.1	初始版本

