三路小电流漏极调制&GaAs 栅压调节 抗辐射 TR 电源管理芯片

1. 产品特性

- ➤ PA 发射电源调制: 5V/800mA
- ➤ DRV 收发电源调制: 5V/100mA
- ➤ LNA 接收电源调制: 5V/100mA
- ➤ GaAs 栅压调节范围: -0.5V ~ -0.85V
- ➤ GaAs 栅极驱动电流: ±2mA
- ▶ 集成正/负压欠压锁定
- ▶ 集成软启动、过流保护(折返电流限制)、过温保护等功能。
- ▶ 总剂量(TID)耐受: ≥100k rad(si)
- ▶ 单粒子锁定及烧毁对线性能量传输(LET)的抗干扰度: ≥75MeV*cm²/mg

2. 功能描述

T/R电源管理芯片C49005RH包含漏极调制、栅极调制等功能模块。其中发射、接收、公共支路漏极调制信号可以通过T和R输入引脚配置输出各800mA/100mA/100mA电流。栅极调制电压为-0.5V~-0.85V,输出电流±2mA可通过EN夹断。芯片还内置正/负压欠压锁定和漏极NMOS泄电功能。

3. 产品应用

- ➤ GaAs FET供电
- ► 栅极调制驱动

4. 裸芯片/封装简介

▶ 本产品为裸芯片,尺寸为2500μm* 1700μm(含划片槽尺寸)

Rev.2

绝对最大额定值 **5.**

表 1 绝对最大额定值

符号		参数	数值		单位		
V_{CC}	Ī	E电源电压	5.5		V		
V_{IH}	输入	入高电平电压	5.5		V		
V_{IL}	输入	入低电平电压	-0.3		V		
T_{STG}		储存温度	-65~150		$^{\circ}$ C		
T_{A}		工作温度	-55~125		10		
工作条件 原Vcc: 5V 原Vee: -5V 意温度T _A : -55℃~125℃ 建T _{STG} : -65℃~150℃ 电参数 表 2 主要电参数							
	符号	测试条4	生		曲刑值		

(1) 使用中超过这些绝对最大值可能对芯片造成永久损坏。

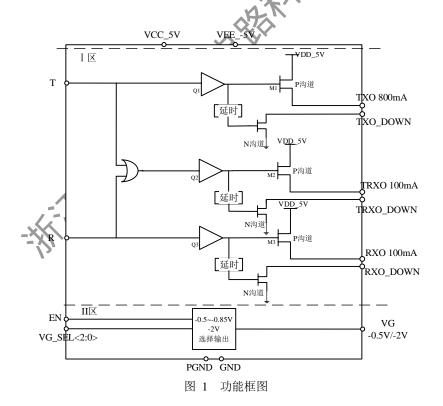
推荐工作条件 **6.**

1) 逻辑电源Vcc: 5V

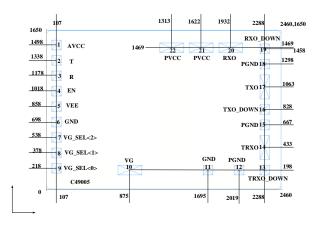
2) 负压电源VEE: -5V

3) 工作环境温度T_A: -55℃~125℃

4) 贮存温度T_{STG}: -65℃~150℃


主要电参数 7.

参数		测试条件	最小值	典型值	最大值	单位
正电源电压	V_{CC}		3		5.5	V
发射脉冲调制输出电压	TX	V _{CC} =+5V, I _{OUT} =800mA	4.9	4.92		V
公共支路脉冲调制输出电压	TRX	V_{CC} =+5 V , I_{OUT} =100 m A	4.9	4.92		V
接收脉冲调制输出电压	RX	V_{CC} =+5 V , I_{OUT} =100mA	4.9	4.92		V
VCC静态电流	Ivcc	$V_{CC}=+5V$,		0.07	0.1	mA
VEE静态电流	$I_{ m VEE}$	$V_{EE} = -5V$,		0.65	1	mA
电源脉冲调制延迟时间 t _d				25	100	ns


电源脉冲调制上升时间	t _r	C _{LOAD} =1nF		25	50	ns
栅极控制电压 (设定工作电压在-0.7V)	VG_0.7V	Source/Sink电流不大于2mA	-0.72	-0.7	-0.68	V
栅极控制电压 (夹断)	VG_2V	Source/Sink电流不大于0.1mA	-2.1	-2.0	-1.9	V
负压保护开启电压	V _{EE_ON}			-2.7	-3	V
负压保护关闭电压	$V_{\text{EE_OFF}}$		-2	-2.4		V
正压保护开启电压	V _{CC_ON}		3	2.7		V
正压保护关闭电压	$V_{\text{CC_OFF}}$	***	SR	2.4	2	V

8. 功能框图及引脚介绍

8.1 功能框图

8.2 引脚介绍

	107 875 1695 2019 2288 2460						
图 2 引脚分布图							
芯片尺寸: 2460µm * 1650µm (不包含划片槽尺寸)							
PAD 尺寸: VG、PVCC、TXO、RXO、TRXO: 100μm * 250μm							
其它 PAD: 100μm * 100μm							
表 3 引脚介绍							
引脚序号	引脚名称	引脚功能描述					
1	AVCC	逻辑电源+5V					
2	T	发射调制输入端,内部电阻下拉					
3	R	接收调制输入端,内部电阻下拉					
4	EN	栅压调节使能端,内部电阻下拉					
5	VEE 负压电源-5V						
6	GND 地						
7	WG_SEL<2> 栅压调节位,内部电阻下拉						
8	VG_SEL<1>	栅压调节位,内部电阻下拉					
9_	VG_SEL<0>	栅压调节位,内部电阻下拉					
10	VG	栅压输出					
11	GND	地					
12	PGND	功率地					
13	TRXO_DOWN	公共支路输出泄电端口					
14	TRXO	公共支路输出端					
15	PGND	功率地					
16	TXO_DOWN	发射调制输出泄电端口					
17	TXO	发射调制输出端					
18	PGND	功率地					
19	RXO_DOWN	接收调制输出泄电端口					
20	RXO	接收调制输出端					

21	PVCC	功率电源+5V
22	PVCC	功率电源+5V

9. 逻辑功能说明

下列各表给出 C49005RH 应用时的漏极和栅极调制真值表

表 4 栅极调制状态真值表

EN	VG
0	-2V
1	-0.5V

表 5 栅压调节真值表

VG_SEL<2>	VG_SEL<1>	VG_SEL<0>	电压
0	0	0	-0.5 V(初始态)
0	0	13,	-0.55V
0	1	0	-0.6V
0	1	A 1	-0.65V
1	0	0	-0.7V
1	0	1	-0.75V
1	Xu.SP	0	-0.8V
1	Star V	1	-0.85V

表 6 漏极调制逻辑真值表

欠压保护	T	R	TX	TRX	RX
开启	X	X	0	0	0
美 闭	0	0	0	0	0
关闭	0	1	0	1	1
关闭	1	0	1	1	0
关闭	1	1	0	0	0

- ▶ "1"指3.3V/5V,"0"指0V,"X"指任意逻辑
- ▶ T、R、EN、VG_SEL<2:0>均有1MΩ电阻下拉。
- ➤ TX、TRX、RX是指将输出端口TXO、TRXO、RXO分别和TXO_DOWN、TRXO_DOWN、RXO_DOWN 通过打线连接在一起。

10. 芯片应用说明

10.1 典型应用图

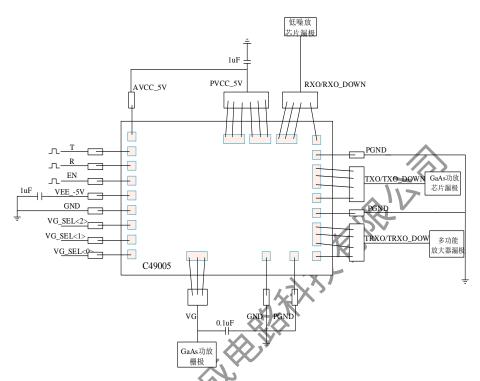


图 3 C49005RH 工作推荐电路

10.2 应用说明

- 1) VCC、VEE 分别接+5V、-5V 的电压;
- 2) T、R、EN 分别为发射、接收调制 TTL 输入信号和栅压使能信号,其高电平范围 2.4V~5V,低电平电压范围 0~0.8V;
- 3) VG 接 GaAs 功放的栅极,供电不能超过 2mA,可通过 VG_SEL<2>、VG_SEL<1>、VG_SEL<0>进行 -0.5V~-0.85V 范围的选择;
- 4) RXO与RXO_DOWN 相连后接 100mA 以下低噪放的漏极;
- 5) TXO 与 TXO_DOWN 相连后接 800mA 以下 GaAs 功放的漏极;
- 6) TRXO 与 TRXO_DOWN 相连后接 100mA 以下多功能芯片放大器的漏极。

11. 注意事项

11.1 产品安装注意事项

1) 芯片键合区主要材料为铝,适宜于键合工艺,键合材料推荐硅铝丝,若使用金丝,在芯片装配、使用

过程中需控制金铝化合物产生:

- 2) 芯片背面未金属化,可采用导电胶粘接;
- 3) 芯片背面为-5V 电位,装配时推荐-5V 或悬空,请勿直接通过背面输入-5V 电压。

11.2 产品使用注意事项

- 1) T、R、EN、VG_SEL<2>、VG_SEL<1>、VG_SEL<0>端口内部设计有下拉电阻,不用时可悬空状态为低:
- 2) 器件不能超过极限工作条件使用;
- 3) 电源去耦:应在靠近器件电源引出端处采用大于等于 1μF 电容。此外,线路板布线应尽量短,尽量避免直角、锐角走线;
- 4) 电路使用时应先接电源端,再接输入端,**电源端建议按照 VEE、VCC 的顺序上电,按照 VCC、VEE 的顺序下电**,同时应尽量避免电源、地线上的干扰。
- 5) 工作时先检查电源、地是否接触良好后再接通器件电源

11.3 产品防护注意事项

- 1) 本产品可以抗 2000V 静电击穿,使用时应注意避免静电损伤,操作人员戴接地防静电手环,操作台面、操作设备接地良好,拿取芯片时,最好使用真空吸笔,以免损伤芯片;
- 2) 真空包装好的芯片应贮存在温度 10℃到/30℃,相对湿度 20%~70%的环境中,周围没有酸、碱或者其它腐蚀气体,通风良好,且具备相应防静电措施;未使用的芯片应存于氮气柜中;
- 3) 在避免雨、雪直接影响的条件下,装有产品的包装箱可以用安全的运输工具运输。但不能和带有酸性、 碱性和其它腐蚀性物体堆放在一起。

12. 版本说明

产品型号	编制时间	版本编号	修订记录
C49005RH	2021.10.14	Rev.1	初始版本
C49005RH	2022.04.11	Rev.2	统一修正

